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ABSTRACT

While the use of workflows for HPC is growing, MPI interop-
erability remains a challenge for workflow management sys-
tems. The MPI standard and/or its implementations provide
a number of ways to build multiple-programs-multiple-data
(MPMD) applications. These methods present limita-
tions related to fault tolerance, and are not easy to
use. In this paper, we advocate for a novel MPI_Comm_launch
function acting as the parallel counterpart of a system(3)
call. MPI_Comm_launch allows a child MPI application to be
launched inside the resources originally held by processes
of a parent MPI application. Two important aspects of
MPI _Comm launch is that it pauses the calling process, and
runs the child processes on the parent’s CPU cores, but in an
isolated manner with respect to memory. This function makes
it easier to build MPMD applications with well-decoupled
subtasks. We show how this feature can provide better flex-
ibility and better fault tolerance in ensemble simulations
and HPC workflows. We report results showing 2x through-
put improvement for application workflows with faults, and
scaling results for challenging workloads up to 256 nodes.
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1 INTRODUCTION

Multiple-programs-multiple-data (MPMD) applications are
becoming more and more common in today’s HPC landscape.
Simulations can be coupled with analysis and visualization
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tools, enabling direct communication between software com-
ponents. Workflows run serial and parallel tasks potentially
written in different programing languages and whose data
dependencies need to be managed by the workflow manage-
ment system (WMS). Ensemble simulations, which consist of
running many instances of the same simulation using different
input to compute statistics on their aggregated results, can
also be put under the workflow umbrella, since they pose
similar challenges in terms of process management and fault
tolerance.

While WMS in the cloud computing area are usually built
with task-level fault-tolerance in mind, HPC workflows are
generally not fault tolerant. They are still hand-written us-
ing MPT or rely on WMS such as Swift/T [1, 16] that are
themselves built on top of MPI. While waiting for better
alternatives, supporting task-level fault tolerance in HPC
workflows through MPI is therefore critical.

Solutions within the current MPI standard and/or its
implementations include using MPMD mode in the MPI
launcher’s command line (mpiexec, aprun, etc., depending on
the implementation in use); spawning new processes by using

functions such as MPI_Comm_spawn and MPI_Comm_spawn multiple;

connecting independently started applications using MPI-
_Comm_accept,connect, join; and rewriting each program as
a function, using MPI communicator management to split
the set of processes according to different roles. All these
methods have limitations and development overhead, and
make fault tolerance difficult if not impossible to manage.

Several requirements can be highlighted to better support
MPMD in an MPI context.

(1) Dynamicity: One must be able to start and stop tasks
(that is, components of an MPMD application) during
the run time of a job, on a selected set of resources,
without having to specify those tasks statically at job
submission time.

(2) Resource isolation: Tasks must be able to run in an
isolated manner, with their own virtual memory space,
to avoid problems with shared symbols, memory leaks,
etc.

(3) Fault tolerance: The failure of a task due to software
defect should not impact other independent tasks. On
the contrary, workflow logic should be able to respond
to such a fault condition and react accordingly.

(4) Ease of use: The mechanism should improve the pro-
grammability of workflow applications. In particular,
it should allow for the composition of existing MPI
applications with little to no modifications in their
initial code.

These requirements advocate for a simple solution: enable
an MPI application to be launched “inside” another MPI
application. In this paper, we propose a new MPI primitive,
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MPI _Comm launch, to ease MPMD programming and enable
better fault tolerance. MPI_Comm_launch acts as the parallel
counterpart of a system(3) call, which, in serial programs,
pauses the calling program to start the requested command
(through a shell) and returns the exit status of this command.
Similarly MPI_Comm_launch allows a child MPI application
to be launched from a set of processes in a parent MPI
application. While the processes in the parent application
are paused, waiting for the exit status of their child, the
child application runs on the same CPUs as the paused
processes and executes in an isolated manner with respect to
memory. Additionally, the child application does not share
communication means with its parent. In case of a software
failure of the child application (e.g., segmentation fault, or
even the application calling MPI_Abort following inconsistent
computations) the parent application is not affected and is
made aware of the failure through the child’s return status,
offering the workflow manager a chance to react to the failure
by either restarting the task, or notifying the user of the
task’s failure.
This paper makes the following contributions.

e We propose the MPI_Comm_launch function along with
its semantics, and we compare its advantages with
existing MPMD functionalities (Section 3).

e We provide an implementation of MPI_Comm_launch and
recommend better ways of integrating it in existing
MPI implementations such as MPICH (Section 3.3).

e We exemplify the use of MPI_Comm_launch in two con-
texts: the Swift/T parallel scripting language and its
associated ADLB-based [11] runtime, and the Cram
library from Lawrence Livermore National Laboratory
(LLNL), designed to run ensemble simulations (Sec-
tion 4).

e We evaluate the benefits of MPI_Comm_launch in terms
of programming overhead, performance, and fault tol-
erance using CODES-ESW, a real HPC workflow used
for design-space exploration of network topologies us-
ing the CODES network simulator and synthetic tests
designed to analyze raw performance (Section 5).

2 BACKGROUND AND RELATED
WORK

In this section we first explicit our fault model. We then detail
ways of implementing MPMD applications and workflows
using MPI. Table 1 summarizes how each of them satisfies
the requirements presented in Section 1.

2.1 Note on the failure model

In this work, we follow the reliability definitions from Hen-
nessy and Patterson [10]. In short, a software defect or other
anomaly causing a program to crash is a fault; this leads to
an error state in software; unhandled errors result in service
failures that propagate up to higher levels of the system
architecture, ultimately to the user. We use the term abort
to indicate other software components that fail due to the
failure of a peer component.

The current MPI standard is vague when it comes to
fault tolerance. For example, it does not specify what should
happen in case of a hardware failure. For this, some tools such
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as BLCR! allow to checkpoint and restart MPI applications,
and migrate processes. Some work has been done to propose
new functions for supporting fault tolerance at user-level [4],
but they have not yet been included in the standard.

Another place where the standard remains imprecise is
when calling MPI_Abort from a process, in which case the
standard only recommends that the processes in the provided
communication group be aborted, while, to the best of our
knowledge, all implementations abort the entire application.
In this situation tools like BLCR are hardly useful, since the
application has explicitly aborted itself.

We call task-level fault-tolerance the fact of being able to
contain a fault to a subset of processes logically representing
a well-defined component, or task. The reason for the failure
is only software-related, may have been requested explicitly
(e.g., with MPI_Abort) or not (e.g., segmentation fault). A
framework is task-level fault-tolerant if, when a logical subset
of processes fails, the framework is notified so as to take
action, and the hardware running the failed processes remains
available for running other processes in the future.

While our contribution enables task-level fault-tolerance
in MPI-based HPC workflows, we do not claim to provide a
solution to process-level fault-tolerance (e.g., reconfiguring
the application after a process failed and rolling it back to a
consistent state).

2.2 MPMD techniques using MPI

2.2.1 MPI launchers MPMD mode. Although the MPI
standard does not define an interface that the process launcher
(mpiexec, aprun, etc.) must comply to, its implementations
can generally be used to enable MPMD by specifying multiple
executables and their arguments, as well as the number of
processes on which each should run. The executables then
share a common MPI_COMM_WORLD communicator. This mode
is therefore convenient for coupled codes, provided that each
component of the application is aware that MPI_COMM_WORLD
is being used by other components.

This MPMD mode is, for instance, used in the Decaf
middleware,? which couples components and establishes com-
munications between them. The Python script that describes
the software components and their data flows is used to is-
sue an mpiexec command under the cover, with the proper
settings to enable each component to run on the appropriate
locations.

In other contexts, however, MPI launcher’s MPMD mode
presents more limitations. Ensemble simulations require launch-
ing thousands of instances with different input parameters.
One would need to make sure that the code of the simula-
tion does not use MPI_COMM_WORLD, since this communicator
is shared among all instances. Also, the run time of the set of
simulation instances is that of the slowest instance, leaving
resources idle with no possibility for scheduling more work.
A better approach would be to launch instances in parallel
but also one after the other as resources are released by com-
pleted instances; unfortunately MPI launchers MPMD mode
cannot do this, since they are inherently supposed to start
all the provided executables at once. LLNL’s Cram library,

Thttp://crd.Ibl.gov/departments/computer-science/ CLaSS /research/
BLCR/
2https://bitbucket.org/tpeterkal/decaf
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Table 1: Summary of the existing approaches to MPMD and how they satisfy the requirements presented in
the introduction. (The notion of “programmability” denotes whether code changes in the child application are

necessary.)

Approach

Dynamicity | Memory Isolation | Fault tolerance

Programmability

MPI Launcher’s MPMD mode
Communicators management
MPI_Comm_spawn
MPI_Comm launch (this work)

NSNS X

some code changes

many code changes

some code changes
no code changes

NEEEN
X X X

described in more detail in Section 4.1, overcomes the issue
of isolating communications, but it does not allow starting
instances one after the other.

In the context of HPC workflows, the MPI launcher’s
MPMD mode simply does not fit: tasks corresponding to
individual programs have to be started and stopped dynam-
ically in a way that cannot be predicted when writing the
command line.

We also note that on many supercomputers this method of
running MPMD programs does not allow multiple executables
to reside on the same node (all the cores of a node have to
execute the same program).

In terms of fault tolerance, this method does not allow
limiting a fault to the faulty component, unless a process-
level fault-tolerance mechanism is used; such a mechanism is
yet unstandardized.

2.2.2 Communicator management. Another way of imple-
menting MPMD applications and workflows is to make sure
each software component is written as a library, with an
entry function that at least takes the communicator to use in
place of MPI_COMM_WORLD. Distinct applications can then be
bound together by calling them from a program that builds
the appropriate communicators between groups of processes.
The MPI functions that help achieve this are MPI_Comm_split
and MPI _Comm _create.

This method is particularly useful for codes coupled for
in situ data processing. As an example, Damaris [§8], is a
middleware that enables in situ analysis and visualization
through dedicated cores or dedicated nodes. The initialization
function of Damaris calls MPI_Comm_split to assign to some
processes the tasks related to in situ analysis. The client
application is, however, required not to use MPI_COMM_WORLD;
hence, some development effort is necessary to adapt legacy
codes, namely, finding all occurrences of MPI_COMM_WORLD in
the code and changing it to a global variable initialized with a
smaller communicator. While such changes seem reasonable,
they can be troublesome when libraries upon which the code
depends also use MPI_COMM_WORLD directly. This is the case
in the workflow presented in Section 5.1, where ROSS, the
library upon which CODES is built, uses MPI_COMM_WORLD.

MPI_Comm_create_group is used by the Swift/T WMS, de-
scribed in more detail in Section 4.2, to call workflow tasks
from a subset of worker processes. Again, the workflow
tasks have to be written as libraries exposing an entry func-
tion that accepts a communicator. They should not use
MPI_COMM_WORLD. Converting an existing, standalone MPI
program into a library that can be used as a task therefore
requires development overhead, as exemplified in Section 5.2.

This method of implementing MPMD programs is not
fault tolerant beyond what a process-level fault-tolerance
mechanism would provide. Since tasks are called as functions,
a software fault in a function leads to the abort of all the
components of the application and workflow beyond the func-
tion itself. In addition, contrary to MPI’s launcher MPMD
mode and to MPI_Comm_spawn, tasks are not isolated in their
own processes; hence the developer has to make sure that the
function does not leak memory and does not have symbols
in common with other software components.

2.2.3 MPI_-Comm_spawn(_multiple). MPI_Comm_spawn and
MPI- _Comm_spawn multiple are potentially the most appro-
priate functions from the current standard for implementing
workflows and more generally MPMD applications. They act
as the parallel equivalent of the fork(2) /execv(3) sequence
by creating new processes and using them to run a given
MPI application. A communicator is created that lets the
spawned application communicate with its parent.

MPI_Comm_spawn could potentially help implement coupled
codes, workflows, and ensemble simulations, but it has several
limitations. The first is that, contrary to a fork(2) /execv(3)
sequence that is usually followed by a wait(3) in the parent
process, there is no function to check whether the spawned
application has terminated. The only way the parent applica-
tion can “wait” for the child application is by having the child
send a termination message to the parent using MPI_Send, and
call MPI_Comm_disconnect on the communicator that binds
it to its parent. The reusability of the resources associated
with a spawned application that terminated is not discussed
in the MPI standard.

The second limitation of MPI_Comm_spawn is that of re-
source management. The MPI 3.1 standard states in its
section 10.1 that “The MPI Forum decided not to address
resource control because it was not able to design a portable
interface that would be appropriate for the broad spectrum of
existing and potential resource and process controllers.” In
other words, where the child processes are started is up to the
resource manager, with the help of user-provided attributes
from the passed MPI_Info argument (e.g. hosts and hostfile
keys). This means that to start processes on previously idle
cores, the resource manager should allow to reserve a set
of node, launch an MPI program on some of them, while
informing the MPI runtime that other nodes are available for
spawning processes later. To start processes on cores where
an MPI process already runs, the operating system must
support oversubscription, which is often not the case on su-
percomputers because of the limited support for preemptive
process scheduling. For these reasons IBM and Cray’s im-
plementations of MPI do not support MPI_Comm_spawn. IBM
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BlueGene/Q, in particular, has hardware limitations that
make it impossible to implement.

The third limitation is, again, fault tolerance. In all current
implementations of MPI, because the spawned application
and its parent share a communicator, a fault in the spawned
application will propagate to the parent, and abort the entire
set of software components.

3 MPI_.COMM_LAUNCH

In this work we advocate for a parallel counterpart of the
system(3) function, which blocks the calling process until
the provided command is run and which returns the exit
status of this command upon termination. We propose the
MPI_Comm_launch function, with the following C prototype:

int MPI_Comm_launch(char* command, char* argv[],
MPI_Info info, int root,
MPI_Comm comm, int* status);

And the following Fortran prototype:

MPI_COMM_LAUNCH(COMMAND, ARGV, INFO, ROOT,
COMM, STATUS, IERROR)
CHARACTER#* (*) COMMAND, ARGV (%)
INTEGER INFO, ROOT, COMM, STATUS, IERROR

Like the first two parameters of MPI_Comm_spawn, the command
argument provides the path to the MPI program to be exe-
cuted and argv (null-terminated array of strings) provides
its arguments. The info parameter can be used to provide
options that would normally be passed to the MPI launcher’s
command line, such as forwarded environment variables, stan-
dard output formatting and redirection for the executed
processes. The root argument is the rank of the process
in which previous arguments are examined. The comm com-
municator gathers all the processes collectively calling this
function. When the child application terminates, the status
parameter is set to the child application’s exit code.

Listing 1 shows an example usage of MPI_Comm_launch
where a child application is launched on half the processes of
the parent.

MPI_.Comm childcomm ;
int color = rankInWorld < sizeOfWorld/2 ? 0 : 1;
int key = rankInWorld;
MPI_Comm_split (MPLCOMM-WORLD,
if (color) {
int status;
MPI_-Comm_launch(” ./ child”, NULL, MPIINFO_NULL, 0
childcomm , &status);

color , key,

Listing 1: Example C code splitting
MPI_.COMM_WORLD and running a child ap-
plication on half of the parent processes.

3.1 Semantics

MPI_Comm_launch is a collective operation over its provided
communicator argument. Its semantics are similar to call-
ing the given executable as a collective function taking
an array of arguments and a communicator, and in which
MPI_COMM_WORLD is replaced with the provided communicator.
Contrary to a function call, however, the execution of the

&childcomm ) ;
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command is isolated in new processes with their own virtual
memory.

More specifically, all processes calling MPI_Comm_launch
transition to a blocked state. On each core where the function
is called, a new process is created and executes the provided
command. The new processes form a single MPI application
with its own MPI_COMM_WORLD. The order of processes (that
is, their rank in MPI_COMM_WORLD) in this new application
follows that of the parent processes in the communicator
provided as argument. Once the child application terminates,
the parent processes switch back to a running state. On all
parent processes the status parameter is set to the exit status
of the child application as defined in the following.

Exit status. If all processes in the child application call
MPI- _Finalize, the exit status is 0. If however one process
calls MPI_Abort with an error code X, or calls exit(X),
or terminates with a particular error code (e.g. 11 for a
segmentation fault), this error code is set as status for the
entire child application. If multiple processes fail with a
different error code, one of them is chosen as exit status and
is consistent across all parent processes.

3.2 MPI Comm launch is not MPI_Comm_spawn

Why block the parent processes? As explained earlier,
MPI_Comm- _spawn creates new processes but does not block
the calling ones. The location of these processes depends
on user-provided attributes and on the resource manager,
hence the standard remained vague and major vendors simply
don’t support MPI_Comm_spawn. MPI_Comm- _launch, however,
does not require any additional resources, hence it does not
depend on the resource manager. Also the number of run-
ning processes/threads remains constant before, during, and
after its execution. Hence, supporting MPI_Comm launch is
less challenging, even on platforms where an OS without a
preemptive scheduler enforces the existence of exactly one
process or thread per computing element. A precise descrip-
tion of MPI_Comm launch can thus be added to the standard
without depending on the resource manager or the OS. It will
allow implementors to handle the complexity of launching
the new processes in their various operating systems and
environments in a portable manner.

Why restrict communication? With respect to com-
munication, MPI_Comm_spawn creates an intercommunicator
shared by the calling processes and the spawned application,
whereas MPI_Comm- _launch does not create such a commu-
nication mechanism. While this can be seen as a limitation,
it is actually an advantage. As explained in Section 2.1, the
MPI standard remains vague about propagating software
failures. Implicitly opening potentially unnecessary communi-
cators gives a chance for failures to propagate beyond a single
launched task. MPI_Comm_launch ensures no communicator
is created between the parent and the child, hence making
it easier define failure containment to the child application.
In case of a software failure or an abort, the child applica-
tion will simply terminate with a nonzero exit code, and its
parent will be notified of the failure through the returned
status. Section 6 provides more thoughts about initiating
communication between tasks.
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Workflows, ensemble simulations, and coupled mod-
els The use of MPI_Comm_launch greatly simplifies the im-
plementation of workflows, coupled models, and ensemble
simulations. It enables starting subapplications dynamically
and in an isolated manner, letting developers setup the nec-
essary communication and fault tolerance mechanisms they
need to react to task faults. In workflows in particular, it
enables tasks to be decoupled from the workflow itself, in
terms of both programmability (the tasks can be designed as
independent programs) and reliability (the tasks execute in
an isolated manner). In Section 4 we present two use cases
illustrating the benefits of MPI_Comm_launch in the context
of ensemble simulations and workflows.

3.3 Implementation

We implemented a prototype® of MPI_Comm_launch as an MPI
extension function, MPIX_Comm_launch. This function works
as follows (its signature is in the beginning of §3).

(1) Each process in comm calls MPI_Get_processor_name to
retrieve the name of the host on which it runs.

(2) MPI_Gather is called to gather all the host names at
the root process.

(3) The root process formats the array of hostnames as a
comma-separated list, as well as other potential argu-
ments provided in the info variable.

(4) The root process calls the system(3) function with a
command that invokes mpiexec on the specified exe-
cutable and with the arguments previously formatted.

(5) Once the system call completes in the root process,
MPI Bcast is called to broadcast the exit status of the
program to all other processes.

The root process blocks in the system(3) call while all
other processes block in the MPI Bcast during the execution
of the child application. Because of the use of system and
mpiexec, two more processes are created in the node running
the root process: one shell instance to invoke the command
and one mpiexec process (plus potentially other processes
created by mpiexec).

This implementation works on traditional Linux clusters in
which process management is not an issue. On supercomput-
ers with microkernels, however, a different implementation is
required. In particular, we envision a direct use of the Process
Management Interface [2] (PMI*) to reuse resources of the
parent application (such as the KVS space) without calling
mpiexec or a shell. Such an implementation would work as
follows.

(1) Each process in comm calls the PMI interface to put
key information required for the child application to
bootstrap.

(2) Each process in comm calls fork(2) then execv(3) to
create a process of the target executable, followed im-
mediately by wait(3).

(3) The newly created processes use the PMI interface to
get the necessary information to bootstrap their com-
munications. This include information put by parent
processes as well as information related to the parent
application that is inherited by the child.

3See https://bitbucket.org/mdorier/mpix_launch
*https://wiki.mpich.org/mpich/index.php/PMI_v2_API

(4) Once the wait() calls complete, MPI_Bcast is called
by the parent processes to broadcast the exit status of
the program to all other processes.

4 CASE STUDIES

In this section, we present two practical use cases motivating
the addition of MPI_Comm_launch to the MPI standard: Cram
and Swift/T workflows.

4.1 LLNL’s Cram

Cram® [9] is a tool that lets users pack and launch many
small instances of an application as a single MPI program.
It was developed by LLNL as a way to avoid overloading the
job scheduler on the Sequoia supercomputer when running
millions of small MPI jobs, and because running a single job
script with a million mpiezec calls would cause the frontend to
run out of resources such as memory or number of processes.

In order to use Cram, the application should be linked with
libcram.a. The user then generates a cram.job file containing
the list of instances to run, along with their arguments. When
the application runs, the initial call to MPI_Init reads the
Cram job file and splits MPI_COMM_WORLD into as many smaller
communicators as necessary to run all the instances of the
application in parallel. The library overloads all the MPI
functions such that any later reference to MPI_COMM_WORLD is
replaced with the appropriate smaller communicator. Each
MPI process thus “believes” it is part of a much smaller group
of processes than the actual MPI_COMM_WORLD really is. Cram
also redirects each instance’s standard output and standard
error into individual files.

4.1.1 Cram’s limitations. Since Cram is implemented as
a library against which the desired application is linked, it
can run instances of only that application. Distinct executa-
bles cannot be packaged using Cram, thus making MPMD
impossible.

Additionally, if one instance of the application fails, all
instances will abort. Cram does not provide any fault tol-
erance mechanism to safely terminate one instance without
impacting other instances, let alone the ability to restart
failed instances.

A Cram job should run on at least as many processes as
the sum of the processes required by each of its individual
instances. If a smaller number is provided, Cram is not able to
schedule instances one after the other. Thus all the instances
run in parallel, and the entire job takes as much time to
complete as the time required by the longest instance.

Moreover, because Cram relies on the MPI profiling API
(PMPTI), the application cannot use tracing libraries such as
DUMPLS® IPM” [18], or Darshan® [5], in conjunction with
Cram.

4.1.2 Cram with MPI_Comm_launch. MPI_Comm_launch pro-
vides a good opportunity to reimplement Cram in a way that
overcomes its current limitations. Using MPI_Comm_launch,
Cram would be implemented as a standalone MPI program
that reads a cram.job file and calls MPI_Comm_launch for each

Shttps://github.com/LLNL/cram
Shttp://sst.sandia.gov/using_dumpi.html
7http://ipm—hpc.sourceforge.net/
8http://www.mcs.anl.gov/research /projects/darshan
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Mode Task Type
In-memory External program
Sequential | Scripting langs [15] app function [12]
Parallel @par function [17] MPI_Comm_launch
(this work)

Table 2: Categorization of task types in Swift/T.

instance on the required number of processes. Because the
Cram program would be used instead of the user’s applica-
tion, it would be able to run instances of different executables,
thus effectively enabling MPMD.

Since an application executed using MPI_Comm_launch can
fail without causing the failure of its parent application,
Cram would immediately support fault tolerance. Addition-
ally, failed instances would not make other instances abort.

A Cram executable relying on MPI_Comm_launch could also
implement scheduling techniques to run a set of instances
on any number of processes, provided that this number is at
least as large as the largest instance to schedule. This would
allow for a better resource utilization.

Moreover, because Cram would not need to overload all
the MPI functions to catch and replace MPI_COMM_WORLD, the
launched instances (as well as Cram itself) could use the
PMPI API for other purposes such as communication and
I/0O tracing.

One could note that Cram’s motivation was to prevent
the creation of hundreds of thousands of processes when
calling series of mpiexec, and that our proposed solution
using MPI_Comm_launch also creates new processes. However,
such process creation is spread across all resources allocated
to the job, instead of being located at the frontend.

1
2
3
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4.2.1 The Swift/T task model. Swift/T has multiple ways
of invoking a user code as tasks, as categorized in Table 2.
The traditional and most common method in practice in-
herits from the legacy of Swift as a grid workflow language.
This consists of putting the command required to call the
executable in an app leaf function. For example, Listing 2
shows how to wrap the cat command into a function that
Swift can call. This method allows a single worker to call the

app (file out) cat (file
” /bin/cat”

inputs []) {
inputs @stdout=out

Listing 2: Wrapping the cat command into a Swift
function.

command. Swift/T extends this model with the ability to
call into in-memory, embedded script language interpreters
that are optionally compiled into the Swift/T runtime. Using
this, for example, a user can wrap C/C++/Fortran code
with Python using SWIG [3] or £2py'° and invoke it very
conveniently and efficiently via a Swift/T function. Swift/T
currently supports Python, Tcl, Julia, and JVM language
(JavaScript, Groovy, Scala, and Clojure) interfaces.

Parallel tasks. Enabling the executable to run on multiple
workers incurs a higher development overhead. First, the
executable has to be rewritten as a library, exposing an entry
function whose first argument is the communicator to use
in place of MPI_COMM_WORLD. The developer should make sure
that the application does not use MPI_COMM_WORLD but uses
the provided communicator instead. Additionally, any use of
global variables in the executable becomes dangerous. The

All these considerations motivate the addition of MPI_Comm_launckecond step is to generate a Tcl interface to this function

as a way to simplify packing many instances of potentially
multiple executables as a single MPI job.

4.2 Swift/T workflows

Swift? [12] is a programming language to support massively
scalable compositional programming. It has implicitly parallel
data flow semantics, in which all statements are eligible
to run concurrently, limited only by the data flow. Swift
emphasizes a hierarchical programming model, in which leaf
tasks linked to external libraries, programs, and scripts in
other interpreted languages [13, 15] execute concurrently,
coordinated by logic expressed in Swift code. Swift is typically
used to express scientific workflows [19], controlling execution
of relatively large tasks (seconds to hours); however, its high
performance (1.5 billion tasks/s on 512K cores [1]) allows
it to be used as a high-performance computing language as
well.

The Swift/T implementation [1, 16] translates Swift scripts
into MPI programs. Swift/T programs run on the Turbine
runtime [14], which implements a small number of data-flow
primitives that enable Swift semantics on a scalable system
without bottlenecks. Turbine is based on the Asynchronous
Dynamic Load Balancer (ADLB) [11], a scalable master-
worker system based on MPI.

Yhttp://swift-lang.org

that calls the Turbine Tcl API to retrieve input data and
store the results. This is not a trivial task and benefits from
the help of a Swift developer.

When it comes to calling external programs, the main
limitation of Swift/T is its lack of support for fault tolerance.
If a command wrapped in an app leaf function returns a
nonzero exit code to Swift/T, the execution of the Swift/T
workflow will abort, returning that exit code (a typical ap-
proach is to handle such faults in a wrapper shell script). As
for C functions invoked as libraries, any failure inside these
functions will make the entire workflow abort as well.

4.2.2 Swift/T with MPI_Comm_launch. We constructed an
interface for MPI_Comm_launch accessible from Swift/T work-
flows called launch. This function has the following proto-
type:

(int status) launch(string cmd, string argv[])

It can be called in a Swift script as follows:

¢ = @par=32 launch("/path/to/mpi/program", args);
This script will launch the desired MPI program on 32 work-
ers, with the provided arguments, and store the program’s
exit code in the variable c.

The launch function is different from calling an app leaf
function that embeds mpiexec (or a bash script calling mpiexec).
The latter would create new processes on targeted nodes,

Ohttps://docs.scipy.org/doc/numpy-1.10.0/f2py
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even though Swift/T workers are running on those nodes and
could potentially run other tasks. As of today’s Swift/T API,
adding launch was the only way to run the parallel program
inside the workers. It could not have implemented with cur-
rently available functions of the MPI standard, in particular
because MPI_Comm_spawn creates new MPI processes instead
of using the workers.

Compared with rewritting executables as libraries to en-
able them to run as parallel tasks of a Swift workflow, our
launch function completely alleviates the development over-
head required to call external programs in parallel from a
Swift /T script. This use case again advocates for the adding
MPI_Comm_launch to the MPI standard.

We also provided a launch_turbine function that, instead
of launching an MPI program, launches another Swift/T
workflow. This function allows to treat a subworkflow as a
single task from the point of view of the parent workflow
and is therefore very useful to prioritize subtasks and enforce
execution locality.

5 EVALUATION

In this section, we assess the benefits of MPI_Comm_launch
in the context of a real Swift/T workflow: CODES-ESW.!*
This workflow aims to perform ensemble simulations of high-
performance networks. It was built to enable design-space
exploration of collective algorithms on various network topolo-
gies. We also use a synthetic workflow to evaluate performance
in terms of launch time.

5.1 CODES-ESW workflow

At its core, CODES-ESW relies on CODES [7], an HPC
network simulator based on ROSS [6], a parallel discrete-
event simulator that executes on multiprocessor systems and
supercomputers. CODES can simulate networks such as torus,
dragonfly, fattree, or slimfly. It relies on the CoRtEx library!?
to simulate MPI collective algorithms. These algorithms are
written in Python.

CODES-ESW aims to run many instances of CODES,
varying input parameters such as link bandwidth, number
and size of messages, and size of the network. Each execution
of CODES is preceded by the execution of a Python script
that generates the required input file. When an instance of
CODES completes, a shell script is called to clean up the
resulting files and extract useful statistics.

CODES instances may sometimes fail for various reasons.
It may run out of memory, in which case a call to malloc will
fail, making the instance fail. In this situation the task could
be restarted on more nodes, to benefit from larger memory.
CODES may call MPI_Abort if the simulation runs into an
incorrect state, in which case the error should be report to the
user so that trace files could be examined. In all these cases,
CODES-ESW should be able to restart submitting instances,
until all instances have successfully run to completion or
failing tasks have been reported to the user.

We implemented two versions of CODES-ESW. The li-
brary version relies on Swift/T’s leaf functions implemented
in C/Tcl: CODES is recompiled as a library that gets called

Hhttps://bitbucket.org/mdorier/codes-esw
2https:/ /xgitlab.cels.anl.gov/mdorier /dumpi-cortex

from Swift/T. The launch version relies on the Swift/T-
level launch_turbine function that itself internally relies on
the new MPI_Comm_launch. This second version launches a
subworkflow for every instance of CODES. We compare both
versions, first in terms of development effort, then in terms
of performance in the presence of faults.

5.2 Qualitative evaluation

We wrote both versions of our workflow starting from a
common version that was missing only the CODES invocation.
It took three weeks for a Swift/T specialist and a CODES
specialist to implement the library version. It raised a plethora
of challenges and issues that we expect many developers would
encounter with other simulations.

CODES as a function: CODES is initially an executable.
We had to replace its main function with a function that
could be called from Swift/T. This also involved writing a
Tcl interface to this function.

Global variables: Both ROSS and CODES include many
global or static variables spread in many files. These global
variables need to be reset to their original value before
CODES runs again. Otherwise, some incorrect values pollute
subsequent runs.

MPI communicators: The ROSS and CODES systems
use MPI_- COMM_WORLD for communication. Yet inside a Swift/T
workflow all communications have to go through a custom
communicator gathering only workers involved in a particu-
lar task. MPT_COMM_WORLD, which gathers all workers plus the
ADLB scheduler, should not be used.

Standard output: CODES outputs its data in files, but
also on the standard output and standard error. To prevent
mixing output from concurrently running CODES instances,
we had to hard-code standard output redirections directly in
C inside CODES.

Python interpreters: Both Swift/T and CODES use a
Python interpreter. While we could not instantiate isolated
interpreters for each CODES instance and for Swift/T, we
had to make sure the only interpreter that exists in the
memory of each Swift/T worker is properly used by CODES
instances and that CODES instances do not interfere with
one another at this level.

Memory leaks: The biggest challenge consisted of finding
all memory leaks in CODES. Indeed, when CODES runs as
an executable, it does not matter if a segment of memory
allocated at the beginning for the purpose of storing a large
data structure is not freed at the end. When running multiple
instances one after the other from the same program, however,
memory leaks accumulate and eventually cause the entire
workflow to abort.

In contrast, the launch version of CODES-ESW, which
relies on MPI_Comm_launch, required barely an hour of devel-
opment. Furthermore, it does not present any of the afore-
mentioned issues. Thanks to our launch and launch_turbine
functions, no Tcl interface is required. There is no need to
change a single line of CODES, since CODES run as an
executable. There also is no need to reset global variables,
change the communicator, fix memory leaks, or solve any
issue related to Python interpreters.

This experience in developing two versions of the same
workflow is what motivated us to propose the addition of
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MPI_Comm_launch in the MPI standard. Discussions with other
researchers trying to simplify ensemble simulations with their
own code led us to the conclusion that there is a broader
need for such a functionality, as they also face the same issues
related to global variables, memory leaks, and more generally
the lack of resource isolation that comes with rewriting an
executable as a library function.

5.3 Quantitative evaluation: fault
tolerance

The goal in this section is to show that MPI_Comm_launch

enables task-level fault tolerance and to quantify the benefits

of such fault tolerance compared with restarting the entire

workflow whenever one task fails.

Ezperimental methodology. We ran our experiments on 25
nodes of the parasilo cluster of Grid’5000.'® Each node is a

Dell PowerEdge R630 with 16 cores and 128 GB of memory.

These nodes are connected through a 10 Gigabit Ethernet
network. We used 1 node to run Swift/T’s ADLB scheduler
and 24 nodes to run the workflow’s tasks. Although each
instance of CODES could be deployed on several nodes, we
ran them on one node here for the sake of simplicity. For each
instance of CODES started by the workflow, we report its
start time and end time. We do not monitor other tasks of
the workflow such as those that create the input files for each
CODES instance, since these tasks’ run time is negligible
compared with the run time of CODES. The run time of the
workflow is the difference between the end time of the last
task and the start time of the first task.

Fault injection. We injected faults by “corrupting” one of
the core functions of ROSS: tw_event_new. This function is

repeatedly called by CODES to create its network events.

When the task starts, a random number R is drawn from
a uniform distribution in the range [0,2%] (for some chosen
values of X). R is then the number of time tw_event new will
succeed before causing a segmentation fault. Depending on
input parameters, a CODES instance will call tw_event new
from a hundred times to ten million times.

Arguably, other fault injection methods and distributions
could be used (such as issuing a Bernoulli trial at every call
to tw_event new). However, the pattern of faults is linked to
their causes (for example, faults induced by a lack of available
memory do not follow a memoryless process, unlike faults
caused by radiation-induced memory corruption). The goal in
this evaluation is simply to illustrate the workflow’s reaction
to failures in one example of failure pattern.

Workflow configuration. We configured the workflow to
run 1,152 instances of CODES. Each instance executes the
simulation of a series of broadcast operations using a binomial
tree algorithm on a torus network. We varied a number
of input parameters of these simulations: the number of
nodes participating in the broadcast, the link bandwidth, the
amount of data sent, the number of time the broadcast is
repeated, the buffer size in routers, and the network packet
size. When injecting failures, we used the fault injection
parameter X of 26, 27, 28, and 29. We found that 26 is the
lowest value that allows failures to have a noticeable impact

Bhttps:/ /www.grid5000.fr
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on the run time while still keeping this run time reasonably
low for each execution of the workflow (up to 10 minutes).
Each execution of the workflow was repeated 5 times with
different seeds for the random number generator.

Results. Figure 1 shows the timeline of two executions
of the workflow when setting the fault injection parameter
to 26. Figure 1(a) corresponds to the library version of the
workflow. In this version, any task fault causes the entire
workflow to abort, so all tasks must be restarted. Red tasks
represent tasks in which a fault was injected, leading them
to fail. Yellow tasks represent tasks that aborted as a result
of another task failing. Failed and aborted tasks must be
restarted. Figure 1(b) corresponds to the launch version of
the workflow. We can see that in this version, the failure of
an task does not cause the entire workflow to abort.

Figure 2 shows the run time of both versions of the work-
flow as a function of the fault injection parameter. It reports
the median over 5 runs for each configuration, along with the
minimum and maximum as error bars. We can see that in
the launch version, the run time is barely affected by faults
(a few seconds of overhead not visible in the figure). In the
library version, however, a high number of faults dramati-
cally increases the run time. Overall, even without faults, the
launch version performs better than the library version.

Figure 3 shows the number of tasks that failed during
the execution of each version of the workflow. This does not
include the tasks that have aborted as a result of a fault
in another task. For a fault injection parameter of 26, we
see that although the method used to inject faults is the
same in both workflows, we obtain a higher number of task
failures. This is due to the fact that in the library version,
a task failure aborts many other tasks. These tasks have to
be restarted, which gives them a second opportunity to fail,
and so on.

5.4 Quantitative evaluation: performance

In this section, we evaluate the ability of our system to launch
many parallel MPI tasks inside a workflow. Note that this is
an evaluation of our prototype, which is in no way optimally
implemented, as explained in Section 3.3.

Experimental methodology. We ran our experiments on
the Blues cluster at Argonne National Laboratory.'* In the
queue batch that was used here, each node contained a Sandy
Bridge Xeon E5-2670 at 2.6GHz with 16 cores and 64 GB
of memory. These nodes are connected through a QLogic
QDR InfiniBand Interconnect (fat-tree topology). We used 1
node to run Swift/T’s ADLB scheduler and the remaining
nodes to run the workflow tasks. Thus, in our largest tests,
256 x 16 = 4096 cores were available to the workflow.

Workflow pattern: Fized-size tasks. In the the first set
of measurements, we used fixed-size parallel tasks. Fixed-
size tasks are scripted as shown in Listing 3. On line 1,
the integer P is set to 1, and used in the @par annota-
tion to run the given task on that many MPI processes
(MPI_Comm_size (MPI_COMM_WORLD) == P). On line 2, the in-
teger N sets the number of loop iterations to that number;
in this case, there are enough tasks for each worker to per-
form 10. On line 7, the new launch() feature runs the given

http: //www.lcre.anl.gov/about/blues
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(b) Workflow version 2: tasks running as MPI programs

Figure 1: Timeline of the workflow’s execution (1,152 tasks completed) by using both approaches: tasks as
function, and tasks as isolated MPI programs. Green tasks completed successfully. Red tasks were intentionally
targeted for failure (fault injection parameter set to 226 here) and were later restarted. Yellow tasks aborted

because another task failed and were restarted as well.
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Figure 2: Run time of the workflows under differ-
ent values of the fault injection parameter. Median
over 5 runs. Error bars correspond to minimum and
maximum.

program on P processes with the given input args. On line
8, the exit code is then checked for an error condition. The
user executable program example.x simply performs the MPI
Init and Finalize operations, and exits with code 0. (The
program is modified in our final case to sleep for 1 second.)
The only communication in the system, once running, is that
workers must retrieve work from the Swift/T ADLB server
(1 task at a time).
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Figure 3: Number of task failures as a function of
the fault injection parameter for the two implemen-
tations of the workflow.

Results: Fized-size tasks. We ran the fixed-size task work-
flow on successively larger allocations on Blues. The task
rate is obtained by dividing the total number of tasks by the
total wall clock makespan time. Thus, the performance is
penalized by any straggling tasks.

For single process tasks, P=1. The user program is ideally
a 0-second (0s) task, so all time is consumed by system over-
heads. Task rate results are shown in Figure 4. As shown, the
task rate increases approximately linearly with the number
of nodes, indicating that the system overheads are dominated
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=

P=1; 1 |c = floor(log2(turbine_workers ()));
N = turbine_-workers () % 10; 2 IN=c¢c x 10;
program = “example.x”; 3 | printf ("W=%i c=%1 JN=%i_tasks=%i",
printf(”swift:_launching: _%s”, program); 4 turbine_workers (), c, N, cxN);
foreach i in [0:N—1] { 5 | program = "example.x”;

args = [7abc”, 7defg”]; 6 | foreach i in [0:N—1] {

exit_.code = @par=P launch (program, args); 7 foreach j in [1l:c] {

if (exit_code != 0) 8 P = 2xx(j—1);

printf(”The_launched_application_failed!”); 9 exit_.code = @par=P launch(program, a);
1} 10 if (exit_code != 0)
TN

Listing 3: Workflow script for fixed-size tasks.

4,000
3,000
2,000

1,000 |

tasks/second

0
0 25 50 75 100 125 150 175 200 225 250
nodes

Figure 4: Task rate for Os 1-process tasks.
750
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nodes

Figure 5: Task rate for Os 4-process tasks.

by local operations (forking and loading example.x from the
file system). In our largest case, 2,865 single-process tasks
were launched per second across 256 nodes.

For the 4-process tasks, the workflow script was modified
so that P=4. In this case, launching example.x involves coor-
dinating 4 nodes, both by Swift/T and internally by mpiexec
and example.x itself. Task rate results are shown in Figure 5.
As shown, the task rate increases approximately linearly with
the number of nodes, indicating that the system overheads
are dominated by operations local to the task. In our largest
case, 815 4-process tasks were launched per second across
256 nodes. This means that extremely fine-grained MPI tasks
with sub-second total run times can be coupled together by
our system into a workflow application at cluster scale.

Workflow pattern: Mixed-size tasks. In the first set of mea-
surements, we used mixed-size parallel tasks. Mixed-size tasks
are scripted as shown in Listing 4. In these scripts, the task
parallelism P varies from 1 to half the system size. The values
of P step through powers of 2 (although this is not required
by the programming model). On line 1, the integer c is set to
the log2() of the system size, this is used to step through the
powers of 2 with the parallel loop written on line 7. The loop
index j is exponentiated on line 8 to obtain the P value that is
used to launch the parallel task on line 9. In the performance

Listing 4: Workflow script for mixed-size tasks.

—a
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Figure 6: Task rate for Os mixed-process tasks.
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Figure 7: Task rate for 1s mixed-process tasks.

results, we use numbers of workers that are between powers
of 2 (6, 12, 24, ...) to demonstrate the ability of the system
to put small tasks in the resulting schedule gaps.

Results for Os mixed-size tasks are shown in Figure 6. In our
biggest case, we launched 28 tasks/second across 192 nodes
of Blues. In accordance with the script logic, the largest tasks
in this workflow ran on 64 nodes. Performance seems to level
off at that point, probably due to the ability of the cluster to
launch 64 task jobs at that rate. This is lower than the rate
for the 1 and 4 process workloads above, but still enables
workflows to use tasks with subsecond runtimes. Note that
while the task rate apparently begins to dip, the amount of
work per task is increasing with the node count; this workflow
is dominated by launching 64-node MPI tasks.

Results for 1s mixed-size tasks are shown in Figure 6.
In these cases, example.x sleeps for 1 second before calling
MPI Finalize and exiting. In our biggest case, we launched
8 tasks/second across 192 nodes of Blues. In accordance with
the script logic, the largest tasks in this workflow ran on 64
nodes. Performance does not seem to level off yet at that
point, probably because with the 1 second delay, the system
still has capacity to start/stop additional tasks per unit time.
This demonstrates that our system enables workflows to use
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tasks with short (~1 second) runtimes on systems like Blues,
even with a wide mix of task sizes.

6 DISCUSSION

In this section, we discuss the semantics of MPI_Comm_launch
and potential additional functions following similar semantics.

Launching multiple applications. Just as MPI_Comm_spawn
has its MPI_Comm_spawn multiple to spawn processes from
multiple executables, we may be tempted to provide an

MPI Comm launch- multiple. It is debatable, however, whether

this function would be useful. One can argue that allowing
each process calling MPI_Comm- _launch to provide a differ-
ent command and different arguments would be sufficient to
effectively start an MPMD subapplication.

MPI_Comm_launch multiple can be justified if we want to
explicitly forbid MPI_Comm_launch from accepting different
commands and arguments for each process; the command
and arguments in MPI_Comm_launch would be relevant only
in the root process.

Communicating outside a task. If communication is re-
quired between processes inside and outside a launched task,
functions such as MPI_Comm_connect/accept/join can be
used, as well as other communication mechanisms such as
local storage, burst buffers, and shared memory.

We note that while MPI_Comm_spawn gives the calling pro-
cesses an intercommunicator allowing them to communicate
with the spawned processes, MPI_Comm_launch blocks the call-
ing processes during the execution of the child application.
Hence there is no reason to establish a communication mech-
anism between the child application and the calling processes.
The latter will not be able to perform any communication
during the lifetime of the child application anyway.

One could argue that the child application may want to
communicate with the rest of the processes in the parent
application that are not paused (those that did not call
MPI_Comm_launch). This notion “the rest of the processes”
cannot be well defined, however, given that an MPI appli-
cation always has the possibility of spawning new processes
(with MPI_Comm_spawn) or to connect to other processes (with
MPI_Comm_connect/accept).

One possibility would be to offer an alternative function,
MPI Comm- _launch and connect, with the following proto-
type:
int MPI_Comm_launch_and_connect(char* cmd, char* argv[],

MPI_Info info, int root, MPI_Comm comm,

int launch, MPI_Comm* newcomm, int* status)

On processes where launch = 0, this function would have
the semantics of MPI_Comm_spawn, and newcomm would become
a new intercommunicator connected to the child application.
The cmd, argv, info, and status arguments would not be
used on these processes. On processes where launch = 1, this
function would have the semantics of an MPI_Comm_launch,
and newcomm would be left unused. However, we think that
such an asymmetric semantics should be avoided altogether.

We advocate for the use of MPI_Comm_accept/connect to
connect child applications, or processes of a child application
with other processes in its parent application.

Note on Multithreading. When MPI is used in a multi-
threaded environment (that is, MPI_THREAD MULTIPLE is used),

only the thread calling MPI_Comm_launch is blocked. Other
threads of the parent application continue running. In this
particular case (which we do not discuss further in this paper),
both the child and parent application processes continue run-
ning, but the number of running processing entities (threads
of processes) still remains constant. It is worth noting that
on most supercomputers, the OS limits the use of threads to
one per core, for the same reason they limit the number of
processes to one per core. Our MPI_Comm_launch function still
ensures one running processing entity per core at all time.

7 CONCLUSION

‘We have proposed MPI_Comm_launch to enable an MPI appli-
cation to run inside another MPI application. This function
overcomes the limitations of existing ways of implementing
MPMD programs using MPI. In particular, we illustrated
its advantages in two practical use cases, using Swift/T and
LLNL’s Cram. The evaluation of this functionality with a real
HPC workflow, CODES-ESW, showed that MPI_Comm_launch
(1) enables faster development (from 3 weeks of develop-
ment using Swift/T existing interface to barely an hour using
an interface based on MPI_Comm_launch), and (2) makes the
workflow fault tolerant at the task level, considerably im-
proving performance and resource utilization. We plan to
propose a more efficient implementation of MPI_Comm_launch
inside the process management part of MPICH, first as an
MPI extension (MPIX_Comm_launch), and to propose this new
function to the MPI Forum.
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